
International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 7 Issue 8, August 2020

 28 www.ijeas.org

Performance Evaluation of SDN Controllers: FloodLight,

POX and NOX

Mohamed Eltaj, Ahmed Hassan M. Hassan

Abstract-Networking technologies achieved an enormous jump

toward an appealing notion, known as software-defined

networking (SDN). to the best of our knowledge, there has been

no comprehensive compression discussion about floodlight, POX

and NOX controller in the literature. the aim of this research is

to evaluate different types of a controller according to various

parameters such as average TCP/UDP throughput, average

bandwidth, packet loss, latency, topology discovery time and

prediction inspection. we did a series of simulation studies in the

mininet framework. it was found that the floodlight controller

shows best performance (throughput) in a tree topology with

congestion window size 32 mb, and a poor performance in linear

and custom topologies, this result motivates extra experiments to

investigate floodlight, we test the controller with different

congestion window sizes 2, 20 and 32 mb, best performance

recorded for 2 mb window size in a linear topology. POX and

NOX controllers record best throughput results than floodlight,

in all topologies, especially POX controller which scored best

throughput in a custom topology. in UDP bandwidth

investigation POX and NOX performed better with higher

bandwidth utilization, while floodlight shows modest

performance in return. lost packet tests, reveal that the highest

rate of lost packets was recorded by floodlight with a significant

difference between all tested controllers. latency test concluded

with performance capabilities for responding to messages_in,

POX controller scored best result with highest response per

milliseconds. topology discovery time results shows that

floodlight controller is the fastest in all topologies, especially in

tree topology. the prediction of controller succeeded with POX

controller in a throughput test, which reflects stability in a

controller performance, unlike latency prediction which failed

against POX.

INDEX TERMS—SDN, OpenFlow, Floodlight, POX, NOX.

1 INTRODUCTION

SDN for short is a programmable solution for

customizing labor networks services and routines at run

time, along with OpenFlow network communication

protocol [1]. It requires networking platform provided

with OpenFlow enabled devices. This paradigm is only

completed with the interference of an intelligent entity

known as “SDN controller”. SDN Controllers

introduced as an operating system for the network, to

Mohamed Eltaj, 1Department of Computer and Information Technology,
Mashreq University, Sudan.

Ahmed Hassan, Department of Telecommunication Engineering, Mashreq
University, Sudan

utilize underlying services. An “ethernet switch-based”

protocol “OpenFlow” works as a coordinator between a

controller and network switches. Obviously the

“coordinator” used with separated entities; in SDN

networking those entities are control and data planes.

Traditionally network devices supported with built-in

control unit for taking decisions in routing jobs.

Evaluating the SDN controller takes into account the

controller’s efficiency perspective. This consideration

requires necessary measures for evaluating, throughput

and latency. In this context throughput and latency are

the very essence of evaluation. Throughput measures

and expresses the usage of bandwidth between

connected devices, while latency denotes controller’

“request-response” time interval. Nemours number of

benchmarking experiments can be performed to estimate

performance of controllers under investigation. A

selection of configured tests introduced in our

experiments, the output shows interesting evaluation

results.

The significant of our project is to performing wide

range of experiments in a controlled environment,

Filling the knowledge gap helps to spread the use of

promising technology such as SDN, Enrich the

experience of administrating SDN networks at least in

the local area, documenting straightforward testing

methods and result visualization, Predicting SDN

network behavior is an appealing solution for optimizing

the usage of business resources, and enhancing quality

of service.

In the following sections, we state the details related to

the related work in section II, the methodology of our

article in section III, and then the system model in

section IV with the results and discussion are providing

in Section V. Finally, Section VI describes the details

related to the conclusion and recommendations.

2 RELATED WORK

The need for modeling hosts, switches and link can be

satisfied by using an open flow network emulation

software such as ofent, Mininet, Omnet, etc.... Ofent and

Mininet are software for modeling fake openflow

networks suggested by many researchers, they motivated

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

29 www.ijeas.org

by the ability of designing large networks as a testing

environment [2] and [3] respectively. In same objectives

of utilizing emulation applications for experimenting

with networks, a SDN with OpenFlow [4], reviewed for

implementing “OpenFlow laboratory”, in a virtual

environment, Mininet used as an emulation application.

The author describes resources needed for implementing

a test-bed, such as hardware, applications and

virtualization technology was used, in this article we

adopted same implementation with regard to hardware

differences, the Test-Bed section describes our

implementation.

In reviewed research [4] , the researcher describes

experiments included software known as Wireshark [5]

as a port capturing tool, the author uses the software to

capture packets from test-bed interfaces, the software

capable of rendering packets according to specific filter.

Filtering Wireshark captured-packets allows analyzing

involved TCP/IP protocols interactively, such as DHCP,

ICPM, ARP and OpenFlow protocol as well, for

example: in a response to a Ping request issued from on

host to another, this request can be used to calculate

discovery time for the topology, by recognizing

messages used for discovery processes, Wireshark

enables referencing captured packets according to

specific filter selection, in a time-line fashion. This

method used in our experiments to compute topology

discovery time for SDN controllers. An adopted

technique in this research, is to communicate with ports

for analyzing traffic, packet analysis tools, are frequently

present in SDN controllers testing environments.

In SDN controller, the topology has been discovered in

[6]. Furthermore, a discovery time “can be treated as an

interval”, begins with the first discovery message and

ends with last topology discovery message [6]. Our

analysis utilizes increasing switches gradually,

specifically in discovery time test, for the all tested SDN

controllers. The controller’s required time for handling a

packet_in, denoted as latency. An observation for

Floodlight controller tested by sending Packets_In and

waiting for a response, the controller evaluated with

different number of switches, the experiment came up

with a slight increase in response to packet in requests

[7]. In a study conducting the Denial-Of-Service

impacts, which can be measured by calculating dropped

packets, an experiment concluded that packets dropped

decreases as the control plane bandwidth increases [8],

this experiment used to measure several aspects in our

research, bandwidth and packet loss averages in

particular. Experiment calculating bandwidth, the author

uses TCP streams to calculate “Achievable bandwidth”,

the mechanism for calculating bandwidth depends on

tracking the total data transferred between hosts over

time, the author uses iperf [9], [10]. Floodlight SDN

controller has been investigated with an experiment with

8, 16 and 32 switches, result show that a slight increase

in response occurs, the Cbench tool used for this

experiment. The most presented measure in controller

investigations is how much data can be consistently

exchanged from end-point to end-point. This measure is

a fundamental in SDN controller’s efficiency

benchmarking, throughput reviewed by many

researchers in the field of open flow networks, reviewed

techniques employed in our tests, for example a paper

[11] about evaluating open flow networks, the author in

a throughput test experiments with streams of packet_in

messages sent from all open flow emulated switches in a

continuous manner, the test result revealed that the

controller incapable of processing all the messages in

real-time, the controller reported a full-load state. The

data collected by tests, therefore, will be handled by

statistical calculations, to produce meaningful results.

Statistical equations and line equation reviewed as well

as regression analysis methods. An elementary

knowledge for the best-fit line regression test reviewed

in statistical resources, to implement a special

investigation about SDN Controllers behavior

predictability.

Investigating SDN controllers performance builds upon

a well understanding of an SDN modeling, depending on

an abstracted architecture adopted by several SDN

controller developers and SDN researchers by far, an

article published by future internet journal [12] adopted

a decent architecture which will be used to focus the area

of the interest upon the three SDN layers: application

layer, control layer and infrastructure layer. Figure 1

describes architecture of SDN technology in a simple

abstracted fashion.

Controller platform

Network Application

Unlock northbound API

Unlock southbound API

Network

Elements

D
a

ta
 P

la
n

e

F
o

rw
a

rd
in

g
/

o
p

er
a

ti
o

n
a

l
P

la
n

e

Data/Management

Plane

(Service/App)

Application Plane

(Service/App)

Figure 1 SDN Structure

The Black-Box testing method conducted in

experimenting SDN controllers, the internal design of

SDN controllers is out of the scope of this research,

keeping in mind the fact that the SDN controller is a

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

30 www.ijeas.org

software application, not a network device. The

methodology used in this experimental research insures

reflecting the efficiency of an SDN controller, a software

testing methodologies involved in a certain degree to

saturate the scope of the research, the theory and practice

introduced in [12] is adopted to investigate the SDN

controllers.

Figure 2 Testing processes flow diagram

The outcome of tests performed will result in lists of

entries generated by a specific application such as iPerf,

Ping or Cbench. For example, testing a burst of ICMP

message sends from host to host by using iPerf

application, iPerf configured to send ICMP message in

time interval manner (almost 100 second), iPerf sends

messages from one host to another using the full

capacity of the link, this scenario in the context of

efficiency can reveal the performance of the network

under the administration of specific SDN controller,

which reflects controller’s capabilities of handling

network’s events and demands.

The amount of data collected by tests can be interprets to

some measures of interest, knowing that various

conclusions can be derived from the same raw data, in

this research the major concern focus on several

measures of performance such as throughput, latency,

topology discovery time, packet lost rate and bandwidth

utilization impacts. Recall that, Black-Box method only

aware of the outcome of the execution of controller,

without considering internal details of the controller as a

program, only functionality and features will be

considered [13]. The methodology used in this research

aimed to experiment with different SDN controllers in a

different network configuration and link capacity,

through controller’s south-bound interface to an

emulated network, to facilitate the mission of suggesting

an adequate controller with lesser effort, by proposing

technical mechanisms as an implementation of an

evaluation of SDN controllers. Evaluating SDN

controllers is an amalgamation of benchmarking

applications and techniques, that is. To perform an SDN

controller investigation, test-bed should be prepared and

equipped as needed for experimenting, minimum

hardware and suitable operating system should be

present, benchmarking tools is required, techniques and

scenarios to follow are essentials, then calculating

averages and measures of desperation, finally plotting

results and stating conclusions. This is a suggested point

of view answering “how evaluating a controller can be

managed”.

In this research, preparing Linux environment for

installing test-bed and controllers consumes precious

time, a good knowledge in driving Linux is generally

required for networking related jobs, no farther

knowledge about Linux references reviewed for

installing, configuring or any other similar processes will

be discussed in this research section, we considered it as

out of scope, nevertheless, we provide some time saving

hints in a test-bed settings section later on.

A common practice in networking experiments is to

emulate networks, for a variety of reasons; they are

inexpensive and affordable besides their ease in the

configuration. Network emulators enable performing

multiple different scenarios; with the most extreme

topology can be imagined. Mininet an open source

network emulator, suggested frequently by researchers

[3], we found this emulator is very handy, especially

when emulated custom networks.

Internet protocols is a prime aspect, observing their

messages enable network monitoring, in this paper, we

depend on internet protocols and “OpenFlow” protocol

to analyze traffic over an emulated network. Wireshark

is a free packet capturing tool employed in our research

in multiple experiment for recording timestamps, which

used for calculating time consumed for message

processing by controller. Analyzed data by Wireshark

and other benchmarking tool, translated to measures:

firstly, “Throughput”, measures the most extreme burst

for sending data between end-points, additionally can be

depicted as an amount of data travelled over time

(kbyte/sec). Secondly, “Latency”, measures SDN

controller's responses to packet_in messages per

second(resp/sec). Thirdly, “Topology Discovery Time”,

measures the interval length, started from first discovery

message, ending with last discovery messaged received

by controller [6].

3 SYSTEM MODELING

Network Topology is a physical and logical design of a

network. Physically, topology is an arrangement

“mapping” of links, nodes, switches and other network

equipment’s used for constructing a network, while

logical design is representing actual data transferring in

opposite to the specific physical design. SDN controller

can be connected to whatever topology design as long as

the topology is used to form a packet-switched network

with an OpenFlow enabled devices.

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

31 www.ijeas.org

3.1 Network Topology

In this experimental article, network topology variations

are the most considered attribute of tests, which

categorize all tests performed on controllers. Network

ubiquitous models constructed by Mininet, such as linear

and tree, while Mininet is used for custom topology

emulation.

A) Linear Topology:

Linear topology in the context of SDN networking is a

network configuration consists of “back-to-back”

connected switches with a single host connected to each.

The command used to instruct Mininet to construct

linear topology is ($ mn --

controlle=remote,ip=127.0.0.1,port=6633 –

topo=linear,7 –switch=ovs).

 Figure 3 shows the linear topology constructed with

Mininet.

Figure 3 Linear Topology

B) Tree Topology:

A tree topology can be configured according to “depth”

and “fanout” attributes, the “depth” attribute specifies

the number of switches connected to a core switch,

where is “fanout” denote the number of connected

switches to each “leaf/edge” switch. Figure 4 present the

tree topology with 7-switchs and 12-hosts.

Figure 4 Tree Topology

C) Custom Topology:

In custom topology, a model construction is derived

from a top-level-node which in our case is an SDN

controller application running on intel machine, multiple

controllers allow SDN networking practice and they

share the same trend of the need of being capable of

supporting NFV requirements to enable SDN controller

to run over almost any on-shelf machine, using

virtualization technology [14]. Figure 5 provides the

custom topology with 7-switchs, 7-hosts and 3-

controllers.

However, Mininet, Miniedit and Cbench are complying

the required specifications of NFV, providing the

capability of constructing an emulated network with the

capacity that may exceeds the controller ability of

handling connections.

In this experiment we use 7 OpenFlow enabled switches,

with 100Mbit bandwidth link and congestion window up

to 32Mbyte in all topologies, each switch connected with

a single host, the same topologies used for all

experiments to compare controllers in identical

environment.

Figure 5 Custom Topology

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

32 www.ijeas.org

3.2 Experiments Setup

The test bed consists of one machine supplied with Intel

core 2Duo CPU at 2.33GH for both ”4 threads” and 4

GB RAM. The machine is running windows 7 as host

and Ubuntu 14.04 LTS (GNU/Linux x86 64) as guest

OS in Oracle Virtual Box, 3GB of ram allocated for the

VM.

3.3 Network Settings

In this project we adopt 3 topologies to experiment with:

Linear, Tree and Custom topologies. The link bandwidth

is 100Mbit/sec for all experiments with maximum

window size (socket buffer) available 32 Mbytes

(conceptually). The same number of switches and hosts

(7switches and 1 hosts per switch) is used in all

experiments. The following command used to emulate

linear and tree topologies, respectively:

($ mn --controlle=remote,ip=127.0.0.1,port=6633 –

topo=linear,7 –switch=ovs)

Those command instruct the application to seek for a

remote SDN controller in the same subnet with port

number configured to 6633 or 6653, almost all SDN

controller initialized with same configuration. Minienit

emulate the custom topology through a graphical

interface, which facilitate the constructing of the desired

topology with the co-operation of Mininet. Mininet

performs several activities such as: Connecting to

controller, creating switches, creating hosts, creating

links, and Establishing network connectivity.

After Mininet conforms a successfully session

establishment, we start 2 terminals (h1 and h7) to run

iPerf for generating traffic between hosts, the following

command executed in Mininet’s command-prompt to

start (external terminals): ($ xterm h1 h7).

Generating traffic task achieved using iPerf application,

iPerf is traffic generator and throughput measurement

tool, running the following command in hosts terminal

invokes iPerf test:

(iperf -s -i 1 -t 100 -w 100M)

(iperf -c 10.0.0.7 -i 1 -t 100 -w 100M)

The above command used to run one machine as a server

(10.0.0.7) and the other as a client (10.0.0.1). The iPerf

configured to run this test for 100 second (time interval

is 1 sec) with window size configured to 32 Mbytes as

maximum, and with ICMP messages as much as the link

afford. Table (1) list the summary for iPerf configuration

parameters.

Table 1 iPerf parameters

Parameter Description Action Value

s

Identify

session as

server

Identifying 7h to

act as server,

listing to requests

from other hosts in

topology.

No

value

passed.

i
Reporting

intervals

Sets periodic time

between intervals.
1

t
Time

interval

Sending messages

interval.
100

f
Output

format

Select reporting

format
M

w
Window

size

Setting socket

buffer size
100M

c

Identify

session as

client

Setting server ip

10.0.0.7

server’s

IP

The Performance Metrics to evaluate the system model

are 1) Throughput: “payload over time”, measures the

most extreme burst of transferring data (Mbytes/sec),

time is a period specified by examiner (100 seconds). 2)

Bandwidth: express the maximum bandwidth utilized

by network (Mbit/sec) and 3) Packet Lost: can be

measured according to received packets with regard to

sent packets, packet loss can be expressed as a

percentage

4 RESULTS AND DISCUSSION

In this section we represent the experimental efforts to

assess SDN networking experience, as an

implementation and practice within testing and

evaluating framework. We provide the Average

Throughput, Average Bandwidth, Packet loss, Latency

and prediction inspection for network with three

different SDN controllers (FloodLight, POX and NOX),

based on linear, tree and custom topology, respectively.

4.1 Average TCP/UDP Throughput

The SDN controllers used in this experiment is

FloodLight, POX and NOX, controller runs for optimum

performance. To invoke controller’s software in each

experiment we execute the following command:

$ sudo java -jar target/floodlight.jar

$ sudo python pox.py forwarding.l2_pairs

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

33 www.ijeas.org

A) Linear Topology
Figures 1, 2 and 3, plotted the achieved bandwidth in

experiment for measuring network performance, iPerf

generate a detailed report, which can be used to interpret

the observations, in this experiment, we observe the

emulated network with socket buffer sizes 32Mbyte and

bandwidth 1000Mbit, the average statistic used as

measure for evaluation.

(a)

(b)

(c)

Figure 6 Throughput - Linear Topology - (a) FloodLight

 (b) POX (c) NOX

The following table contains average values for three

experiments with different SDN controllers, Floodlight,

POX and NOX.

Table 2 Average Throughput for network with three

different SDN controllers.

Topology
Average

Floodlight POX NOX

Linear 8.0493 405.9723 227.176

According to the average values taken from three

experiments the network shows best performance with

POX controller. The following figure (7) used for best

visualizing the comparison results between Floodlight,

POX and NOX controllers. From the results we can

observe cleary that the POX controller achive higher

throughput with increasing the time.

Figure 7 Throughput - Linear Topology - Floodlight, POX

and NOX

B) Tree Topology

Mininet and iPerf used to emulate network and generate

traffic, as previous experiment:

$ mn --controlle=remote,ip=127.0.0.1,port=6633 –

topo=tree,depth=3,fanout=2 –switch=ovs

- iperf -s -i 1 -t 100 -w 100M

- iperf -c 10.0.0.7 -i 1 -t 100 -w 100M s

Table (3) contains average values for three experiments

with different SDN controllers, Floodlight, POX and

NOX.

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

34 www.ijeas.org

(a)

(b)

(c)

Figure 8 Throughput -Tree Topology – (a) Floodlight (b)

POX (c) NOX

Table 3 average values for three experiments with

different controllers, Floodlight, POX and NOX

Topology
Average

Floodlight POX NOX

Tree 105.5462 511.098 272.64

According to the average values taken from three

experiments the network shows best performance with

POX controller. The following figure (9) used for best

visualizing the comparison result. Cleary observed that

the POX controller provides higher throughput from

startup to 48 time.

Figure 9 Throughput - Tree Topology - Floodlight, POX

and NOX

C) Custom Topology

Miniedit and iPerf used to emulate network and generate

traffic, as previous experiment. The pervious command

used to invoke Miniedit graphical environment. Figure

(10) describe the throughput results of the three

controllers.

$ sudo python expamples/miniedit.py

- iperf -s -i 1 -t 100 -w 100M

- iperf -c 10.0.0.7 -i 1 -t 100 -w 100M

(a)

(b)

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

35 www.ijeas.org

(c)

Figure 10 Throughput -Custom Topology – (a) Floodlight

(b) POX (c) NOX

The following table (4) contains average values for three

experiments with different SDN controllers, Floodlight,

POX and NOX.
Table 4 Average values for three experiments with

different controllers, Floodlight, POX and NOX

Topology
Average

Floodlight POX NOX

Custom 12.6635 574.9511 48.9107

According to the average values taken from three

experiments the network shows best performance with

POX controller. The following figure (11) used for best

visualizing the comparison result:

Figure 11 Throughput - Custom Topology - Floodlight,

POX and NOX

4.2 Average Bandwidth
A) Linear Topology

The SDN controllers used in this experiment is

FloodLight, POX and NOX, controller runs for optimum

performance. Mininet configured the network as the

same as the previous experiment. The result came up

with the following plotted in figure (12).

(a)

(b)

(c)

Figure 12 Bandwidth -Linear Topology – (a) Floodlight

(b) POX (c) NOX

Table (6) contains average values for three experiments

with different SDN controllers, Floodlight, POX and

NOX.

Table 5 Average values for three experiments with

different SDN controllers, Floodlight, POX and NOX

Topology
Average

Floodlight POX NOX

Linear 0.393514 10.18568 3.260811

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

36 www.ijeas.org

According to the average values taken from three

experiments the network shows best performance with

POX controller. The following figure (13) used for best

visualizing the comparison result.

Figure 13 Bandwidth - Linear Topology - Floodlight, POX

and NOX

B) Tree Topology

The result came up with the following plotted diagrams

figurer (14).

(a)

(b)

(c)

Figure 14 Bandwidth -Tree Topology – (a) Floodlight (b)

POX (c) NOX

The following table contains average values for three

experiments with different SDN controllers, Floodlight,

POX and NOX.

Table 6 average values for three experiments with

different controllers, Floodlight, POX and NOX

Topology
Average

Floodlight POX NOX

Tree 0.3579 10.8292 9.2242

According the average values taken from three

experiments the network shows best performance with

POX controller. Figure following diagram used for best

visualizing the comparison results. Clearly observe that

the POX and NOX are achieve higher bandwidth.

Figure 15 Bandwidth - Tree Topology - Floodlight, POX

and NOX

C) Custom Topology

Miniedit used to configure the network as the same as

the previous custom topology experiment for

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

37 www.ijeas.org

throughput. The result came up with the following

plotted figure (16).

(a)

(b)

(c)

Figure 16 Bandwidth - Custom Topology – (a) Floodlight

(b) POX (c) NOX

The following table (7) contains average values for three

experiments with different SDN controllers, Floodlight,

POX and NOX.

Table 7 average values for three experiments with

different controllers, Floodlight, POX and NOX

Topology
Average

Floodlight POX NOX

Custom 0.5025 2.482 4.8245

According the average values taken from three

experiments the network shows best performance with

NOX controller. The following figure (17) used for best

visualizing the comparison results.

Figure 17 Bandwidth - Custom Topology - Floodlight,

POX and NOX

 After sending the first quota of packets, the

sender receives the acknowledgment, then

progressively the number of packets can be send

will increased (throughput), and that continued

with each acknowledgment received, till

congestion occurred, then the number of packet

will be decreased to reach the amount of packets

that can be accommodated by switch, this

interpreting the zigzag pattern of the shape of the

plot.

 The collapse shown above denotes the “Incast

Problem” which occurred due to the burst of

packets generated using iPerf (128KB for TCP)

and the limitation of switch memory in order to

buffer packets (congestion) [15], which affects

the throughput dramatically.

 SDN controller handles congestion in switches

throughout setting action table, this process is an

original task for controller to be achieved, via

application layer solutions through

implementing efficient algorithms to handle

congestion (which out of the scope of the

research), however the controller capabilities of

handling such situation will impact the

throughput generally [16], One reason for

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

38 www.ijeas.org

Floodlight low performance is congestion

problem. The second observed reason for

Floodlight controller performance is high rate of

messages exchange, at least in the test’s frame of

time (100 seconds).

 Floodlight controller in linear topology

experiment with window size 32 Mbyte shows

lower throughput, unlike POX and NOX, we

investigate Floodlight with different window

sizes in the same topology. Figure (18) present

the throughput comparison with 2, 20 and 32

Mbyte window size.

Figure 18 Throughput with different window sizes 2, 20

and 32 Mbyte - Floodlight

Floodlight show better performance with 2 Mbyte

window sizes, which reveal Floodlight incapability of

handling large window size.

Table 8 Throughput Averages - 2, 20 and 32 Mbyte

window size - Floodlight

Topology
Floodlight

2 Mbyte 20 Mbyte 32 Mbyte

Linear 226.5677 70.0713 8.0493

 One cause of heavy traffic in networks is the

discovery messages that broadcasting from

controller to manipulate network by discovering

connected device (switches).

 The SDN controller interfere in the process of

transmitting data between end nodes, by setting

the path for the data, through the modification of

switch’s flow table in case of table miss, this

process required mechanisms to discover the

topology in the first place, packet_in and

packet_out messages exchanged between

controller and switches in network to identify

hosts, all examined SDN controller implement

this message-exchanged topology discovery

method[17], the process initiated by the switch

when a packet with unknown destination

received in his ingress port, the switch sends the

packet (or part of it) to the controller to decide

on it, same method of propagating LLDP

messages by controller to maintain topology

awareness and controller-switch channel

establishment described in [18], the negotiation

over the network consumes available bandwidth

(to some extent) according to controller’s

specifications and behavior, such as time

interval for sending discovery messages.

 Floodlight controller unable to handle

congestion efficiency, no other factors in this

controlled experimental environment can affect

the performance of the network, in contrast with

other investigated controllers.

 The high values of the plot describe the

controller’s max throughput can be achieved, on

the other hand the low values describe the

minimum throughput according the switch

available memory.

 Standard deviation, show that the throughput did

not affect by course of time.

4.3 Packet lost

 SDN controllers investigated in this test are Floodlight,

POX and NOX, as previous TCP/UDP test different

topology constructed for testing the controllers, linear,

tree and custom, Mininet and Miniedit used for

constructing topologies, iperf used to generate traffic

between end nodes.

One node configured as a server (10.00.0.7) and the

other as a client (10.0.0.1), the dropped or lost packet

observed according to the detailed report generated by

iperf are listed in table (9).

Figure (19), figure (20) and figure (21) are describe the

packet loss in three topologies. From the figures we can

observe that the FloodLight has higher packet loss in

linear and tree topology and NOX controller has lower

packet loss in case of custom topology.

Congestion (as previous experiments) is the cause of

dropping messages, due to the full memory state of the

switch [8], Packets during their travelling through

switches get lost or delayed, retransmission enforced

when a packet timeout occurred. Protocols used to insure

the transmission of packets such as TCP, in contrast

UDP protocol do not maintain such assurance, which led

to poor VoIP or video stream Floodlight in linear

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

39 www.ijeas.org

topology with 32 Mb window size and 100 Mbits/sec

bandwidths, shows highest dropped message among all

controllers.

Table 9 Received, send and lost packet

Controller Topology Received Packets Send Packets Lost percentage

Floodlight

Linear 1397 4990 72

Tree 3992 4990 20

Custom 3470 4990 30.4409

POX

Linear 4984 4990 0.12024

Tree 4990 4990 0

Custom 3592 4990 28

NOX

Linear 4982 4990 0.16

Tree 4990 4990 0

Custom 4987 4990 0.05

Figure 19 Packet Lost - Linear Topology

Figure 20 Packet Lost - Tree Topology

Figure 21 Packet Lost - Custom Topology

4.4 Latency

Latency estimated using high speed or burst of sending

messages to a controller, the ability of handling received

message is keystone for better performance, cbench

emulate a fake network for testing purposes and

generating an adequate report (at least form IT

profession point of view). Packet_in and Packet_out is

an openflow messages used to regulate and control the

process of transferring data (in form of chopped

messages “packets”), latency used some time to protect

network form congestion or over-charge that may

happened in high traffic networks, investigating

controllers against latency or the delay may have

happened in a controller is the goal of this test. The

following table (11) shows the average responses per

second, also the image describes the same values, higher

value represents better response to OFPT_PACKET_IN

sends to controller.

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

40 www.ijeas.org

Table 10 Average Response/sec.

Controller Average Responses/sec

Floodlight 1799.81

POX 5353.92

NOX 2223.83

Latency also denoted as response over time, Cbench

used to measure latency in this experiment, the

mechanism used by Cbench is generating traffic by

sending messages from all switches connected in

network to controller aggressively, which will cause

congestion, and therefore will affect control channel

with latency[8]. Figure (22) show that the POX

controller has higher latency.

Figure 22 Latency (response/sec)

4.5 Topology Discovery Time

Mininet used for constructing emulated network. Iperf

(as in other experiments) used as traffic generator,

sending message (ICMP messages as matter of fact), the

route for those message is unknown to controller, so to

solve this problem, a switch used to broadcast a

discovery message, this message received and handled

by controller to a locate the desired route for message(s),

the addressed node detected and switch sends a

packet_out to controller. Table (12) describes the

OpenFlow messages used for this purpose (discovery).

Figure 23 summarize discovery time for controllers,

which can be obtained by calculating the difference

between first and last discovery message exchanged

between switch and controller.

The role played by Wireshark application is analyzing

and capturing traffic on ports (test-bed ports), timestamp

and message type used to identify required time for

controller to discover the topology or addressed node.

The number of packets handling discovery process

depends on topology and active channels with switches

[19].

Table 11 Wireshark's captured OpenFlow packets – Floodlight, POX and NOX

Timestamp Source Destination Protocol Type Packet Type Topology Controller D. Time

16018 91.642 5a:2d:36:8f:bc:e7 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN linear floodlight 0.008

16032 91.65 localhost localhost OpenFlow 92 Type: OFPT_PACKET_OUT

39352 288.15 92:6e:db:bf:39:38 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN tree floodlight 0.096

39417 288.246 localhost localhost OpenFlow 172 Type: OFPT_PACKET_OUT

 262729 2314.993 d6:7d:d9:17:56:22 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN custom floodlight 0.032

262770 2315.025 localhost localhost OpenFlow 172 Type: OFPT_PACKET_OUT

 2487 60.823 5a:23:95:2c:bc:a0 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN linear pox 0.077

2560 60.9 localhost localhost OpenFlow 172 Type: OFPT_PACKET_OUT

 21761 124.143 b6:c6:cd:99:1d:13 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN tree pox 0.164

21846 124.307 localhost localhost OpenFlow 92 Type: OFPT_PACKET_OUT

 81292 761.396 d2:46:35:26:ba:b6 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN custom pox 0.085

81361 761.481 localhost localhost OpenFlow 172 Type: OFPT_PACKET_OUT

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

41 www.ijeas.org

16796 53.10245 9e:50:ba:48:2b:b9 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN linear nox 0.098151

16864 53.2006 127.0.0.1 127.0.0.1 OpenFlow 172 Type: OFPT_PACKET_OUT

 37654 279.8228 96:e6:3a:9e:2c:ae Broadcast OpenFlow 128 Type: OFPT_PACKET_IN tree nox 0.117577

37706 279.9404 127.0.0.1 127.0.0.1 OpenFlow 92 Type: OFPT_PACKET_OUT

 36996 241.0883 66:20:94:9c:57:b0 Broadcast OpenFlow 128 Type: OFPT_PACKET_IN custom nox 0.141344

37069 241.2297 127.0.0.1 127.0.0.1 OpenFlow 172 Type: OFPT_PACKET_OUT

4.6 Prediction Inspection

We use cbench benchmarking tool to collect data about

throughput with different number of switches, which

serve the mean of scalability. Cbench calculate average,

standard deviation and other statistics to estimate the

behavior of a controller, we use POX controller as an

experimental subject. Test achieved using 8, 16, 24, 32,

40, 48 and 56 switches, the last value “56” used to test

the correctness of line equation for predicting. The idea

behind prediction is formulating an equation for each

controller, which helps network administrator to

estimate throughput and latency for future network

scalability. Important point to recognize, the number of

switches should not exceed the maximum number have

served by SDN controller.

Table (13) contains data about throughput and latency,

for 8, 16, 24, 32, 40, 48 and 56 switches.

(a)

(b)

(c)

Figure 23 Discovery Time – (a) Linear Topology (b) Tree

Topology (c) Custom Topology

Table 12 Throughput and Latency of POX controller

Figure (24) and figure (25) are represents trend line

constructed according to the result output, for both

throughput and latency for POX controller. The line

equation for throughput and latency easily can be

calculated using Excel, by choosing “Trend” for plotted

scattered diagram. In this experiment, figure (24) shows

the throughput of POX controller with different number

of switches. The equation of best-line y = (-16.58x +

6399), the negative value of the x parameter (beta)

describes the negative relationship between throughput

and the number of switches, controller’s throughput

decreased with each added switches.

Switches

Throughput -

POX
Latency - POX

average stdev average stdev

8 6278.04 328.35 5429.05 253.27

16 6069.85 720.75 5129.19 449.45

24 6152.86 540.59 5736.91 491.13

32 5726.17 832.30 5801.51 319.09

40 5774.27 1199.81 5918.37 19.84

48 5612.20 1205.37 5693.57 791.98

56 5586.11 1278.21 5531.57 1046.09

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

42 www.ijeas.org

Figure 24 Throughput vs. Switches – POX

Figure 25 Latency - POX

By substituting the x value equal to 56 switchs, we get a

good approximation for throughput equal to 5470.52,

which is not far from cbench result equal to 5586.11

flows per ms as an average. Besides the computed

correlation (-0.92876) represent very strong relationship

between throughput and the number of switches. Unlike

throughput in figure (25), latency test failed to predict

behavior when tested with 56 switch, the result not close

enough as preceding throughput result, we came with

value equal to 6262.28 response per ms as an average,

according to (y = 13.41x + 5242) line equation. The

relation between latency and number of equation is

positive and strong according to the computed

correlation 0.693812977.

5 CONCLUSION AND RECOMMENDATION

In this experimental research, we tested several SDN

Controllers such as Floodlight POX, NOX, experiments

performed under different topologies linear, tree and

custom. Applications used for benchmarking controller

configured with different parameters such as bandwidth,

socket buffer and different number of switches. Several

tests for different performance measures considered,

throughput, latency, packet lost, topology discovery time

and UDP bandwidth utilization. We attempt to predict

the behavior of controllers through regression or best

line fit as a statistic for sample results drown from

reports generated by benchmarking applications and

analyzing tools.

The most important discovery in controllers evaluating

revealed that the technology of SDN suffering from the

lack of an adequate interface. Robustness also a great

concern (Floodlight is an exception), which tends to fail

during operating and conflicts with some operating

system issues such as port allocating and de-allocating.

The congestion forms the major restriction in the flow of

packets across the network which requires more efficient

algorithms to overcome this limitation. Once again, the

aim of this research is to represent the strength of

controllers rather than failing them. Studying SDN

controller in a real hardware separated from emulated

network will provide pest judgment, also running

benchmarking tool in a separate machine increases

efficiency of tests by overcome virtualization limitation

and complications such as memory usage and port

allocation. Designing test application for specific

purposes such as network discovery will facilitate

gaining more control in tests performance. Mimic

realistic network configuration in an emulation

application will provide close estimation for network

performance. Designing real world network traffic such

as UDP applications (audio and video streaming) for

investigating capabilities of network and controller can

provide results close to reality.

REFERENCES

[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
and O. Koufopavlou, "Software-defined networking (SDN):

Layers and architecture terminology," in RFC 7426: IRTF, 2015.

[2] A. H. M. Hassan, A. M. Alhassan, and F. Izzeldean, "Performance
Evaluation of SDN Controllers in Ofnet Emulation Environment,"

in 2019 International Conference on Computer, Control,

Electrical, and Electronics Engineering (ICCCEEE), 2019, pp. 1-
6: IEEE.

[3] K. Kaur, J. Singh, and N. S. Ghumman, "Mininet as Software
Defined Networking Testing Platform," presented at the

International Conference on Communication, Computing &

Systems (ICCCS–2014, 2014.
[4] C. Fernandez and J. Muñoz, "Software Defined Networking (SDN)

with OpenFlow 1.3," Open vSwitch and Ryu,(June 2010), vol. 183,

2016.
[5] (2/10/2019). Wireshark. Available: https://www.wireshark.org.

[6] V. Bhuvaneswaran, A. Basil, M. Tassinari, V. Manral, and S.

Banks, "Benchmarking Methodology for Software-Defined
Networking (SDN) Controller Performance," Internet Engineering

Task Force, Tech. Rep. RFC-8456, 2018.

[7] Z. K. Khattak, M. Awais, and A. Iqbal, "Performance evaluation of
OpenDaylight SDN controller," in 2014 20th IEEE international

conference on parallel and distributed systems (ICPADS), 2014,

pp. 671-676: IEEE.

[8] R. Kandoi and M. Antikainen, "Denial-of-service attacks in

OpenFlow SDN networks," in 2015 IFIP/IEEE International

Symposium on Integrated Network Management (IM), 2015, pp.
1322-1326: IEEE.

[9] A. Tirumala, T. Dunigan, and L. Cottrell, "Measuring end-to-end

bandwidth with Iperf using Web100," in Presented at, 2003, no.
SLAC-PUB-9733.

[10] A. H. Eljack, A. H. M. Hassan, and H. H. Elamin, "Performance

Analysis of ONOS and Floodlight SDN Controllers based on TCP
and UDP Traffic," in 2019 International Conference on Computer,

Control, Electrical, and Electronics Engineering (ICCCEEE),

2019, pp. 1-6: IEEE.
[11] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, "Performance

evaluation of OpenFlow-based software-defined networks based

on queueing model," Computer Networks, vol. 102, pp. 172-185,
2016.

https://www.wireshark.org/

Performance Evaluation of SDN Controllers: FloodLight, POX and NOX

43 www.ijeas.org

[12] W. Braun and M. Menth, "Software-defined networking using

OpenFlow: Protocols, applications and architectural design

choices," Future Internet, vol. 6, no. 2, pp. 302-336, 2014.

[13] K. Naik and P. Tripathy, Software testing and quality assurance:

theory and practice. John Wiley & Sons, 2011.

[14] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, "Network Function Virtualization: State-of-the-art and

Research Challenges," IEEE Communications Surveys and

Tutorials, p. 9, 2015.
[15] A. Phanishayee et al., "Measurement and Analysis of TCP

Throughput Collapse in Cluster-based Storage Systems," in FAST,

2008, vol. 8, pp. 1-14.
[16] A. Tirumala, L. Cottrell, and T. Dunigan, "Measuring end-to-end

bandwidth with Iperf using Web100," p. 2.

[17] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, "Efficient
Topology Discovery in OpenFlow-based Software Defined

Networks," ed, 2015.

[18] "OpenFlow Controller Benchmarking Methodologies," November
2016 ed: Open Networking Foundation, 2016, p. 11.

[19] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, "Efficient

topology discovery in OpenFlow-based software defined

networks," Computer Communications, vol. 77, pp. 52-61, 2016.

